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Abstract: In Long term evaluation (LTE) systems advanced wireless communication technique is used to 

minimize the Multiple Access Interference (MAI). Both transmitter and receiver are responsible for the better 

throughput and minimum error rate. Transmitter plays the major role and needs little efficient modification in 

terms of transmission power and modulation techniques. Minimum transmission power deliver the good results 

and it can be achieved by peak to average power ratio (PAPR) reduction with the help of soft computing 

techniques. In this letter, we propose a new method that uses NNs trained on the active constellation extension 

(ACE) signals to reduce the PAPR of OFDM signals. Unlike other NN based techniques, the proposed method 

employs a receiver NN unit, at the OFDM receiver side, achieving significant bit error rate (BER) improvement 

with low computational complexity 
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I. Introduction 

One of the popular modulation methods of digital communication is OFDM. Audio and TV broadcasting, 

internet access through broad band wireless networks and mobile communications (4G) uses OFDM as their 

modulation technique. However the average the fraction of multi carrier signals in the communication channel is 

often expressed in a quantity called PAPR. PAPR stands for Peak to average power ratio. PAPR is expressed as 

the ratio of maximum power to the average power. The relation between PAPR and the quality of the signal is 

inverse. Less the PAPR more is the signal quality. In the field of wireless communication several techniques are 

being researched for the reduction of the PAPR and is a hot spot.  

To mitigate the occurrence of OFDM signals with large peak power, various PAPR reduction methods 

have been proposed such as the active constellation extension (ACE) technique [2]–[4]. The ACE scheme 

reduces the PAPR with low bit error rate (BER) by iterative time domain signal clipping and frequency domain 

constellation point extensions. Unfortunately, the ACE scheme requires a large number of inverse discrete 

Fourier transform (IDFT) and discrete Fourier transform (DFT) operations with slow convergence. In [5], a low 

complexity ACE method based on artificial neural network (NN) was proposed. The time frequency neural 

network (TFNN) PAPR reduction method, proposed in [5], achieves a close PAPR reduction performance 

compared to the ACE method with lower complexity. However, the TFNN scheme requires complex frequency 

domain NN modules and shows a poor BER performance in high order modulation fading channels. In this 

letter, we propose a novel PAPR reduction technique based on the ACE and NN techniques. The proposed 

scheme has much lower complexity and better BER performance compared to other ACE based methods with 

very small PAPR reduction performance loss. 

 

II. System Model 
The incoming data symbol is first to be phase modulated. The modulation chosen for this is the QPSK. This 

gives us a signal in which two bits are modulated at once selecting one of four possible carries phase shift. Now 

the signal has to be converted to time domain and is thus followed by MN point IDFT where M is the over 

sampling factor. The signal is then clipped with a pre-defined threshold value. Since clipping would cause in-

band-distortion and out-of-band radiation, we apply the resultant clipped signal to the NN for training and 

classification and then filtered.  

The frequency domain data symbol vector with N sub carriers and over sampling rate of M with (M-1)N zeros 

in the middle is expressed as  

 
where Xk is the quadrature phase shift keying (QPSK) or quadrature amplitude modulation (QAM) modulated 

data symbol of kth subcarrier. The nth oversampled time domain 
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OFDM signal is expressed as 

 
where N is the number of subcarriers. Equation (2) can be 

expressed as 

 
where Q is the inverse discrete Fourier transform (IDFT) of 

size JN × JNand QH denotes the Hermitian of Q. The PAPR of the transmitted OFDM signal is defined as 

 
where E[・] denotes the expectation operator. The complementary cumulative distribution function (CCDF) of 

the PAPR of an OFDM signal is generally used to evaluate the performance of a PAPR reduction scheme. The 

CCDF of the PAPR for a given clip level PAPR0 is defined as 

 
For the OFDM systems with Gaussian time domain signals, 

the CCDF of the PAPR can be expressed as 

 
where N is the number of subcarriers. 

 

III. Proposed NN Technique 
3.1.ACE Scheme 

In the ACE scheme, the PAPR is reduced through L number of iterative processing between the time 

and frequency domain. The signal peaks are reduced by clipping the signals with magnitudes exceeding a 

certain target peak level in time domain and BER degradation is avoided in frequency domain by constraining 

the movement of the constellation points due to clipping to only acceptable extension directions. 

 

3.2 TFNN Scheme 

In the TFNN scheme, the PAPR is reduced by the use of two stage neural network architecture based 

on time domain neural network (TNN) for time domain processing and frequency domain neural network (FNN) 

for frequency domain processing. Both TNN and FNN are based on the multilayer feed forward network [6] 

with two layers and two neurons per layer with triangular activation function. The TFNN is trained using the 

ACE signal as the desired signal with the Levenberg-Marguardt algorithm [7] as the learning algorithm. The 

training procedure of the TFNN technique is 

as follows [5]. 

left margin=.5in 

 

1) Obtain training input and desired signals for time domain processing: The time domain OFDM signal x is 

used as the training input signal to the TNN. The time domain ACE signal xACE is used as the desired signal for 

neural weight adaptation process. 

2) Train and construct real and imaginary TNN modules, ModTNNRe and ModTNNIm : The real and imaginary 

parts of the training input and desired signals are separated to be used as independent training input and desired 

signals for two different TNN module constructions. 

 

3) Obtain training input and desired signals for frequency domain processing: The frequency domain TNN 

signal XTNN is obtained by applying DFT to the time domain TNN output. The frequency domain ACE signal 

XACE is obtained by applying DFT to xACE. XTNN is used as the training input signal and XACE is used as the 

training desired signal for training FNN. 
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4) Separate the training input and desired signal into four constellation regions: The divided signals are used to 

construct eight independent FNN modules, ModFNNRe,1q , ModFNNIm,1q, ModFNNRe,2q , ModFNNIm,2q, ModFNNRe,3q , 

ModFNNIm,3q, ModFNNRe,4q , ModFNN Im,4q, corresponding to each four quadrants. 

 

5) Train and construct real and imaginary FNN modules for four constellation regions. 

 

6) TFNN architecture is completed based on the TNN and FNN modules from previous steps. 

 

1.3 Proposed Scheme 

In the proposed scheme, the FNN unit is removed and an additional simple NN unit is employed at the 

receiver side as shown in Fig.1.  

 
Fig. 1. Block diagram of the proposed scheme. 

 

Reduction of complexity is realized by using a single time domain NN unit for PAPR reduction and BER 

performance improvement is achieved through the time domain NN unit at the receiver. The proposed 

transmitter NN (TXNN) and the receiver NN (RXNN) are based on the multilayer feedforward network with 

two layers and two neurons per layer with triangular activation function. The training procedure of the proposed 

NN scheme can be described as follows. 

leftmargin=.5in 

 

1) Obtain training input and desired signals for TXNN: The time domain OFDM signal x is used as the training 

input signal to the TXNN and the time domain ACE signal xACE is used as the desired signal. 

2) Train and construct real and imaginary TXNN modules, ModTXRe and ModTXIm : The real and imaginary 

parts of the training input and desired signals are separated to be used as independent training input and desired 

signals. 

 

3) Obtain training input and desired signals for RXNN: The time domain TXNN signal xTXNN is used as the 

training input signal to the RXNN and the time domain OFDM signal x is used as the training desired signal. 

 

4) Train and construct real and imaginary RXNN modules, ModRXRe and ModRXIm to be applied at the 

receiver side. The testing procedure of the proposed NN scheme is realized as follows. 

 

leftmargin=.5in 

 

1) Obtain time domain OFDM signal x: The time domain OFDM signal is obtained by applying an IDFT to the 

modulated data symbols in X. 

 

2) Obtain time domain TXNN signal xTXNN : The trained 

TXNN is applied to the OFDM signal to produce 
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3) At the receiver side, a quasi-static frequency selective 

Rayleigh fading channel with perfect channel estimation 

is assumed. 

4) Obtain time domain RXNN signal yRXNN : The trained RXNN is applied to the received signal with channel 

estimation to produce 

 
 

TABLE I 

COMPUTATIONAL COMPLEXITY COMPARISON OF THE ACE, THE TFNN,AND THE 

PROPOSED SCHEMES WITH N = 128 SUBCARRIERS ANDL = 20 ACE ITERATIONS 

 
3.4. Complexity Analysis 

The computational complexity of the ACE, the TFNN, and the proposed schemes is compared in Table 

I. The table shows the number of complex multiplications and additions due to the use of (I)FFT modules, real 

multiplications and addition due to the use of NN modules, and the feasible region check operations. It is 

assumed that the number of complex multiplication and additions required of the N point (I)FFT modules are 

(N/2) log2(N) and N log2(N), respectively. Furthermore, the NN modules based on the multilayer feedforward 

network with two layers and two neurons per layer require 8N real multiplications and 6N real additions. In the 

ACE scheme, L iterative processing of N point IFFT computation is required for time domain clipping and 

additional L iterative processing of N point FFT computation is required for frequency domain constellation 

extension. In addition, LN feasible region check operations are required to enforce acceptable extension 

constraint. In the TFNN scheme, one N point IFFT computation is required for TNN processing and one N point 

FFT computation is required for FNN processing. In addition, 2 NN computations are required for the real and 

imaginary TNN processing and 8 NN computations are required for the real and imaginary FNN processing. 

Also, N feasible region check operations are required to enforce acceptable extension constraint. As for the 

proposed scheme, only one N point IFFT computation is required for TXNN processing. Furthermore, 2 NN 

computations are required for the real and imaginary TXNN processing and additional 2 NN computations are 

required for the real and imaginary RXNN processing. However, no feasible region check operation is needed in 

the proposed scheme. From Table I, it can be seen that the proposed scheme reduces the computational 

complexity compared to other schemes in terms of the number of complex multiplications and additions, real 

multiplications and additions, and the check operations. 

 

IV. Simulation Results 

In this section, the proposed NN algorithm was evaluated based on the PAPR reduction and the BER 

performance. In the simulations, the number of subcarriers was set to N = 128 and the oversampling rate was set 

to J = 4. 

The frequency domain data symbols were modulated using the QPSK and 16-QAM constellations on each 

subcarrier. For comparison purposes, simulation results were obtained for 

the original OFDM system, the traditional ACE scheme, theTFNN scheme, and the proposed NN scheme.  
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Fig. 2. CCDFs of the PAPR for original OFDM, ACE, TFNN, and the proposed method with N = 128, L = 20, 

and 16-QAM modulation 

 

For the ACE method, the target clipping level A was set to 4.9 dB and the iteration were applied whenever the 

PAPR was greater than the target PAPR of 6 dB and the number of iterations was less than L = 20. 

The CCDF of the PAPR was used to evaluate the PAPR reduction performance of the proposed scheme 

compared to other schemes. It was observed that the ACE scheme, TFNN scheme, and the proposed NN scheme 

can significantly reduce the PAPR compared to the original OFDM signal for both QPSK and 16-QAM 

constellations. The TFNN scheme offers better PAPR reduction performance compared to the proposed NN 

scheme for low clip level PAPR0 values as shown in Fig. 2. This is because the TFNN employs additional 

complex frequency domain NNs to improve PAPR reduction and BER performance. However, the proposed NN 

scheme shows small performance loss, less than 0.25 dB, with much lower number of NN modules compared to 

the TFNN scheme. 

 Fig. 3 show the BER performances of the original OFDM system, the ACE scheme, the TFNN scheme, 

and the proposed NN scheme in the Rayleigh fading channel with QPSK and 16-QAM, respectively. The 

channel is assumed to be quasi-static frequency selective and perfect channel estimation is considered. It can be 

observed from  that the ACE and NN based methods achieve BER improvement over the original OFDM signal 

due to the constellation extension, resulting in increased margin and lower error rates. Furthermore, the TFNN 

and the proposed NN schemes show better BER performance compared to the ACE scheme, demonstrating 

robust frequency domain processing. 

 
Fig. 3. BER performance for original OFDM, ACE, TFNN, and the proposed method with N = 128, L = 20, and 

QPSK in the Rayleigh fading channel. 
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V. Conclusion 
In this letter, we have proposed a novel ACE PAPR reduction method based on the transmitter NN and 

receiver NN with low computational complexity. From the simulation results, it was observed that the BER 

performance of the conventional ACE scheme is very poor than that of the original OFDM signal in Rayleigh 

fading channel with QAM modulation. The TFNN scheme was marginally better than the ACE scheme in the 

BER performance for high Eb/N0 values. However, the proposed scheme was shown to achieve a significant 

improvement in BER performance with similar PAPR reduction capacity compared to other ACE based 

techniques with lower complexity. 
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